This blog is for gardeners above, beyond, and below the surface. For those interested in botanical names, inventories, collection and else.

Not recommended for gardeners depending only on nurseries for the practice.

Friday, September 21, 2012

LIGHT AND SHADE

 IN some circles is fine to paraphrase to make the information more or less personal.  In this quarters is not, if some can write/say it better what is the point?  One thing I have never understood is plagiarism, if somejuan has nothing to say, close the blog....start something else.  The photos are yours truly.

 One confession, I am falling in love with the north, those changes of light and shade as the earth moves is a real trip, a collateral benefit unsuspected when this project started.       


Distinguishing Degrees of Light and Shade

Learn to match the type of light with suitable plants, and your gardens will shine

So, shade is shade, right? Wrong. All shade is not created equal. Many variables, including season, time of day, age of trees, their density, and canopy composition, all affect how plants are shaded. Understanding these factors helps gardeners select and care for plants.
Let's set the record straight. Shade is a term used to describe some degree of relief from the sun. There are basically four classes: light shade, partial shade, full shade, and deep shade. These are based on the duration of time without sun, coupled with shade density.

Shade varies by habitat

To define degrees of sun and shade, and the needs and tolerances of various plants, I look to natural habitats. In nature, full sun is analogous to meadows, prairies, and other open country. Cultivated plants that require a full day of direct summer sun -- 10 or more hours -- are native to these ecosystems. Light shade occurs along edges of woodlands and in savannas where trees provide up to 25 percent canopy closure and plants receive 5 to 10 hours direct sun. In partial shade, such as in open woods, and small clearings with up to 50 percent canopy closure, plants get less than five hours of direct sun and are shaded for at least half the day. Full shade occurs in forests and woodlands with complete canopy closure. Plants there may take in less than an hour of direct sun a day, though they may glean filtered or dappled light throughout all or part of the day as the sun tracks across the sky. In deep shade, direct sunlight seldom, if ever, reaches the ground. This occurs in coniferous forests, or in gardens where walls or building overhangs block out the sun.
Equally important as the sun-to-shade continuum is solar intensity -- the strength of the sun's rays. This varies with the time of day, the season, and the sun's distance from the equator. Early-afternoon sun is more intense than morning or late-afternoon sun. Equatorial regions and mountains experience the most solar intensity. In the U.S. and Canada, the sun shines most intensely June through September and is stronger in the South than in the North. Thus, a plant grown in light shade in Minnesota may require partial or full shade in Alabama.
Plants are adapted to shaded environments in various ways. For instance, in most woodlands there is ample, often direct, sun during springtime while the branches of forest trees are bare. Many woodland species have evolved to handle this temporary abundance of light. They produce rapid growth in spring to spread their leaves and flowers while direct sun is available before trees, shrubs, ferns and larger wildflowers leaf out. As the light level drops, some more diminutive woodland wildflowers, such as anemone and spring beauty, simply go dormant. On the other hand, many woodland plants, such as trillium, bloodroot, and epimedium, bloom early, but keep their leaves well into summer, or even the fall. These persistent species use different strategies to ensure ample food production.

Shade leaves are often broader and thinner

Leaf size is one of their main adaptations. Broad and flattened leaves on plants such as umbrella leaf, hosta, and skunk cabbage function like huge solar collectors. Many leaves, such as those on ferns, aralias, and black cohosh, have dissected blades that are equally efficient, but also more wind-resistant. A large leaf divided into many small segments is less apt to be tattered or flattened in a summer storm. Leaves adapted to full sun are often smaller than shade-adapted leaves. Sun-adapted leaves have many layers of chlorophyll-rich cells, called palisade cells, piled one upon the other. This piggybacking is possible because the strong, direct sun can penetrate deep into the leaf. In this way, a small leaf can be very efficient. In contrast, shade-adapted leaves have a single layer of photosynthetic palisade cells, so the leaves must be proportionately bigger to accommodate the same number of cells and produce the same amount of food.
Leaves that are efficient in the sun are usually unable to function in the shade, and vice versa. For example, a potted ficus tree placed outside for its summer vacation gets lots of light, so it grows efficient, cell-packed leaves. In the autumn, when it's "back-to-school time," the ficus suffers a setback. Indoor light levels are low, and the high-efficiency leaves can't function, so the tree sheds them and produces new, larger leaves better adapted to less light.

Hot sun burns shade leaves

Shade leaves, because they have a thin palisade layer, are subject to burning in the hot sun. This became painfully clear recently, when a summer storm brought down half of my largest canopy tree. Overnight, the garden switched from full shade to light shade. Although some leaves have burned, I suspect that next year, most of the plants will gracefully make the transition. As new leaves emerge, they will be better adapted to the new light conditions. I may have to move a few plants, such as pulmonarias, which seem unable to absorb enough water to keep from wilting in the direct sun. Large-leaved plants are also subject to scorching in hot, dry weather for the same reason. In my bog garden, the huge, thin leaves of umbrella leaf often burn in July in the hot, afternoon sun. The same amount of sun earlier in the day would not be detrimental. Evergreen plants are the best-adapted to full and deep shade. Since their leaves don't go dormant, they are full-time solar collectors whenever the temperature is over 45°F.
So, how can gardeners make the most of shade? The bottom line is that even the most dyed-in-the-wool shade plants will benefit from bright light, or even some direct morning sun, where duration and intensity are moderate. A plant that tolerates deep shade will grow better in full shade. A plant that grows in full shade will generally grow more lush in partial shade, particularly if it receives direct sun in the morning.
From Fine Gardening 59 , pp. 16-18











Tuesday, September 4, 2012

SOIL POST II

THIS is part two of what could easily could be the next General Hospital. Same reference as before.

FUNGI

MOST fungi resemble a mass of tangled threads (hyphae) called a mycellium.  Fruiting bodies grow from mycellium.  These bodies release spores that may be considered the 'seeds' of fungi.  Some fungi grow to become quite large-the common mushroom is a fungues. The mushroom is the fruiting body of a fungus whose hyphae feed on decaying material in soil.  However, much of the fungi in the soil must be examined under a microscope.  Up to 450,000 fungi may reside in a teaspoon of soil.

While fungi are less numerous than bacteria, because of their larger size, they generally make up the largest microbial mass in the soil. Fungi are entirely heterothropic and  aerobic, and occupy larger pore spaces. Fungi tend to dominate in acid soils.

Along with bacteria, fungi act as the main soil decomposers.  Fungi can attack matter that resists breakdown by bacteria, partly because hyphae can grow into the material.  Many fungi are plant parasites, such as with the fungus (Verticillium spp) that attacks potatoes, several landscape plants, and other plant species.  A group of soil fungi called "damping-off fungi", like Rhizoctonia, attack seeds and seedlings and cause root rots, particular problems for  greenhouse and container nursery growers. 

A few odd fungi are predators.  For instance certain fungi  capture and consume nematodes (a microscopic worm)These fungi trap nematodes either by growing rings that can tighten around the body
of a nematode or by growing knobs covered with a sticky substance. After the nematode is trappec, hyphae grow into its body until it is consumed.

EDITORIAL

I received some feedback from one of those Florida people gardening as they only can. Her comments? How deep/interesting.

The information above and the rest  to come, may seem irrelevant to most amateurs.  However,  in Puerto Rico, where I live, some con artists have been promoting edible gardens left and right, for  $125 USA dollars a pop.  They advertise edible gardens as a solution like sustainable agriculture and food sovereignty.

But Josy Latorre and Douglas Kndelabro, (among others) prophet/ess respectively,  of this fad, never mention that any intelligent, echologically correct  gardening requires  solid notions
about soil, pests, and diseases.......not to get into irrigation.

As if any fool, overweight, unable to bend, to  pull some weeds,
could have AN garden edible or not.   

The intelligent solution to solve this matter would be to do a street by street inventory of what people have planted in their backyards, 
fruits, herbs and such as they do in California, swapping this for that.
If you have arthritis, heart problems  to name a few, edible gardens are not for you, unless you have high beds, preferably on tables.   

that is that